Perturbation of Zeros of the Selberg Zeta Function for Γ0(4)
نویسندگان
چکیده
We study the asymptotic behavior of zeros of the Selberg zeta-function for the congruence subgroup Γ0(4) as a function of a one-parameter family of characters tending to the trivial character. The motivation for the study comes from observations based on numerical computations. Some of the observed phenomena lead to precise theorems that we prove and compare with the original numerical results. 1 2 Introduction This paper presents computational and theoretical results concerning zeros of the Selberg zeta-function. The thesis [Fr] shows that it is possible to use the transfer operator to compute in a precise way zeros of the Selberg zeta-function, and carries out computations for Γ0(4) for a one-parameter family of characters. The results show how zeros of the Selberg zeta-function follow curves in the complex plane 1Classification: 11M36, 11F72, 37C30 Addresses • Mathematisch Instituut Universiteit Utrecht, Postbus 80010, NL-3508 TA Utrecht, Nederland email: [email protected] • Institut für Theoretische Physik, Technische Universität Clausthal, Leibnizstraße 10, 38678 Clausthal-Zellerfeld, Deutschland current address: Mathematics Institute, Zeeman Building, University of Warwick, Coventry CV4 7AL, United Kingdom email: [email protected] • Institut für Theoretische Physik, Technische Universität Clausthal, Leibnizstraße 10, 38678 Clausthal-Zellerfeld, Deutschland email: [email protected]
منابع مشابه
Twisted Second Moments and Explicit Formulae of the Riemann Zeta-Function
Mathematisch-naturwissenschaftlichen Fakultät Doctor of Philosophy Twisted Second Moments and Explicit Formulae of the Riemann Zeta-Function by Nicolas Martinez Robles Verschiedene Aspekte, die analytische Zahlentheorie und die Riemann zeta-Funktion verbinden, werden erweitert. Dies beinhaltet: 1. explizite Formeln, die eine Verbindung zwischen der Möbiusfunktion und den nichttrivialen Nullstel...
متن کاملThe Selberg Zeta Function and Scattering Poles for Kleiman Groups
In this note we present a polynomial bound on the distribution of poles of the scattering operator for the Laplacian on certain hyperbolic manifolds M of infinite volume. The motivation is to understand more fully the geometry of the poles of the scattering operator. The proof uses the relationship between poles of the scattering operator and zeros of the Selberg zeta function for geodesic flow...
متن کاملOn the Poles of Rankin-selberg Convolutions of Modular Forms
The Rankin-Selberg convolution is usually normalized by the multiplication of a zeta factor. One naturally expects that the non-normalized convolution will have poles where the zeta factor has zeros, and that these poles will have the same order as the zeros of the zeta factor. However, this will only happen if the normalized convolution does not vanish at the zeros of the zeta factor. In this ...
متن کاملZeros of the Riemann Zeta-Function on the Critical Line
It was shown by Selberg [3] that the Riemann Zeta-function has at least cT log T zeros on the critical line up to height T, for some positive absolute constant c. Indeed Selberg’s method counts only zeros of odd order, and counts each such zero once only, regardless of its multiplicity. With this in mind we shall write γ̂i for the distinct ordinates of zeros of ζ(s) on the critical line of odd m...
متن کاملResummation of classical and semiclassical periodic-orbit formulas.
The convergence properties of cycle expanded periodic orbit expressions for the spectra of classical and semiclassical time evolution operators have been studied for the open three disk billiard. We present evidence that both the classical and the semiclassical Selberg zeta function have poles. Applying a Padé approximation on the expansions of the full Euler products, as well as on the individ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Experimental Mathematics
دوره 22 شماره
صفحات -
تاریخ انتشار 2013